Good morning!

Your tests are graded. They will be returned at the end of the period. Anyone who wants to RETAKE this exam is welcome to; however, The retake will be next THURSDAY at 2:45 pm.

Enzymes and Metabolism Chapter 8, Part II

Today I will...

Review factors that affect enzyme activity.
 Describe a laboratory procedure that will be used to study enzyme activity.

Lock and Key model

- Simplistic model of enzyme action
 - substrate fits into 3-D structure of enzyme' active site
 - H bonds between substrate & enzyme
 - like "<u>key fits into lock</u>"

Induced fit model

- More accurate model of enzyme action
 - 3-D structure of enzyme fits substrate
 - substrate binding cause enzyme to <u>change shape</u> leading to a tighter fit
 - "conformational change"
 - bring chemical groups in position to catalyze reaction

How does it work?

- Variety of mechanisms to lower activation energy & speed up reaction
 - synthesis
 - active site <u>orients substrates in correct position</u> for reaction
 - enzyme brings substrate closer together
 - digestion
 - active site binds substrate & puts <u>stress on bonds</u> <u>that must be broken</u>, making it easier to separate molecules

Compounds which help enzymes

Fe in

- Activators cofactors
 - non-protein, small <u>inorganic</u> compounds & ions
 - Mg, K, Ca, Zn, Fe, Cu
 - bound within enzyme molecule

<u>coenzymes</u>

- non-protein, organic molecules
 - bind temporarily or permanently to enzyme near active site
- many <u>vitamins</u>
 - NAD (niacin; B3)
 - FAD (riboflavin; B2)
 - Coenzyme A

- Enzyme concentration
- Substrate concentration
- Temperature
- ▶ pH
- Salinity
- Activators
- Inhibitors

catalase

- Enzyme concentration
 - as \uparrow enzyme = \uparrow reaction rate
 - more enzymes = more frequently collide with substrate
 - reaction rate levels off
 - substrate becomes limiting factor
 - not all enzyme molecules can find substrate

- Substrate concentration
 - as \uparrow substrate = \uparrow reaction rate
 - more substrate = more frequently collide with enzyme
 - reaction rate levels off
 - all enzymes have active site engaged
 - enzyme is <u>saturated</u>
 - maximum rate of reaction

- Temperature
 - <u>Optimum T°</u>
 - greatest number of molecular collisions
 - human enzymes = 35°- 40°C
 - body temp = $37^{\circ}C$
 - <u>Heat: increase beyond optimum T[°]</u>
 - increased energy level of molecules disrupts bonds in enzyme & between enzyme & substrate
 - H, ionic = weak bonds
 - <u>denaturation</u> = lose 3D shape (3° structure)
 - <u>Cold: decrease T[°]</u>
 - molecules move <u>slower</u>
 - decrease collisions between enzyme & substrate

Enzymes and temperature

 Different enzymes function in different organisms in different environments

▶ pH

• changes in pH

- adds or remove H⁺
- disrupts bonds, disrupts 3D shape
 - disrupts attractions between charged amino acids
 - affect 2° & 3° structure
 - denatures protein
- optimal pH?
 - most human enzymes = pH 6-8
 - depends on localized conditions
 - <u>pepsin</u> (stomach) = pH 2–3
 - <u>trypsin</u> (small intestines) = pH 8

- Salt concentration
 - changes in salinity
 - adds or removes cations (+) & anions (-)
 - disrupts bonds, disrupts 3D shape
 - disrupts attractions between charged amino acids
 - affect 2° & 3° structure
 - denatures protein
 - enzymes intolerant of extreme salinity
 - Dead Sea is called dead for a reason!

Compounds which regulate enzymes

Inhibitors

- molecules that reduce enzyme activity
- competitive inhibition
- <u>noncompetitive inhibition</u>
- irreversible inhibition
- <u>feedback inhibition</u>

Competitive Inhibitor

- Inhibitor & substrate "compete" for <u>active site</u>
 - <u>penicillin</u> blocks enzyme bacteria use to build cell walls
 - <u>disulfiram (Antabuse)</u> treats chronic alcoholism
 - blocks enzyme that breaks down alcohol
 - severe hangover & vomiting 5-10 minutes after drinking

Overcome by <u>increasing</u> substrate concentration

 saturate solution with substrate so it out-competes inhibitor for active site on enzyme

(a) Competitive inhibition

Non-Competitive Inhibitor

- Inhibitor binds to site other than active site
 - <u>allosteric inhibitor</u> binds to <u>allosteric site</u>
 - causes enzyme to change shape
 - <u>conformational change</u>
 - active site is no longer functional binding site
 - keeps enzyme inactive
 - <u>some anti-cancer drugs</u> inhibit enzymes involved in DNA synthesis
 - stop DNA production
 - stop division of more cancer cells
 - <u>cyanide poisoning</u> irreversible inhibitor of Cytochrome C, an enzyme in cellular respiration
 - stops production of ATP

Allosteric inhibitor changes shape of enzyme so it cannot bind to substrate

(b) Noncompetitive inhibition

Substrate

Enzyme

Irreversible inhibition

- Inhibitor permanently binds to enzyme
 - <u>competitor</u>
 - permanently binds to <u>active site</u>
 - <u>allosteric</u>
 - permanently binds to <u>allosteric site</u>
 - permanently changes shape of enzyme
 - nerve gas, sarin, many insecticides (malathion, parathion...)
 - cholinesterase inhibitors
 - · doesn't breakdown the neurotransmitter, acetylcholine

Allosteric regulation

- Conformational changes by regulatory molecules
 - inhibitors
 - keeps enzyme in inactive form
 - activators
 - keeps enzyme in active form

Metabolic pathways

- Chemical reactions of life are organized in pathways
 - divide chemical reaction into many small steps
 - artifact of evolution
 - ↑ efficiency
 - intermediate branching points
 - \uparrow control = regulation

Efficiency

- Organized groups of enzymes
 - enzymes are embedded in membrane and arranged sequentially
- Link <u>endergonic</u> & <u>exergonic</u> reactions

Feedback Inhibition

- Regulation & coordination of production
 - product is used by next step in pathway
 - final product is inhibitor of earlier step
 - allosteric inhibitor of earlier enzyme
 - <u>feedback inhibition</u>
 - no unnecessary accumulation of product

 $\begin{array}{ccc} A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \\ enzyme enzyme enzyme enzyme enzyme enzyme for the enzyme enzyme$

allosteric inhibitor of enzyme 1

Feedback inhibition threenine

Example

- synthesis of amino acid, <u>isoleucine</u> from amino acid, <u>threonine</u>
- isoleucine becomes the <u>allosteric inhibitor</u> of the first step in the pathway
 - as product accumulates it collides with enzyme more often than substrate does

Don't be inhibited! Ask Questions!

Energy Principles

Two Pathways

CATABOLIC pathways:

break down complex molecules into smaller ones

- hydrolysis/digestion reactions
 - RELEASES energy
 - Example: respiration

ANABOLIC pathways:

consume or **ABSORB** energy

- -building complex molecules from smaller ones.
- -condensation/dehydration synthesis
- Example: Photosynthesis

Energy-What is it?

- ENERGY is the ability to do work.
- The ability to rearrange a collection of matter.

Forms of energy:

- Kinetic (KE)
 - Energy of ACTION or of MOTION
- Potential (PE)
 - Stored energy
- Activation Energy
 - Energy needed to convert PE to KE.

A diver has more potential energy on the platform than in the water. Diving converts potential energy to kinetic energy.

Climbing up converts the kinetic energy of muscle movement to potential energy.

A diver has less potential energy in the water than on the platform.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

SECOND LAW OF THERMODYNAMICS

Each energy transfer or transformation increases the entropy of the universe.

So what is **ENTROPY**?

- A measure of disorder or chaos
- The *quantity* of energy in the universe is constant, but its *quality* is not.

So HOW DOES LIFE WORK to <u>minimize</u> ENTROPY?
By using energy from the environment or external sources (e.g. food, light).

Free energy The portion of a system's energy that can perform work. ΔG = H - (T)S

G = free energy of a system

- H = total energy of a system
- $T = temperature in {}^{\circ}K$
- S = entropy of a system
- If the system has:
 more free energy
 it is less stable
 It has greater work capacity

Spontaneous vs. Stabile

- If the system is unstable, it has a greater tendency to change spontaneously to a more stable state.
 - This change provides free energy for work.
 - More free energy (higher G)
 - Less stable
 - Greater work capacity

- The free energy of the system decreases (∆G < 0)
- The system becomes more stable
- The released free energy can be harnessed to do work
 - Less free energy (lower G)
 - More stable
 - Less work capacity

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummi

Chemical reactions & energy

- Some chemical reactions <u>release energy</u>
 - <u>exergonic</u>
 - digesting polymers
 - hydrolysis = catabolism
- Some chemical reactions require input of energy
 - <u>endergonic</u>
 - building polymers
 - dehydration synthesis = anabolism

building molecules= MORE organization= higher energy state

digesting molecules =

LESS organization=

lower energy state

Endergonic vs. exergonic reactions endergonic <u>exergonic</u> - energy released energy invested digestion synthesis Energy supplied Energy supplied Product Energy must be +∆G supplied. Energy released Energy released Reactant Reactant **Energy** is -∆G released. Product ΔG = change in free energy = ability to do work

Energy & life

- Organisms require energy to live
 where does that energy come from?
 - <u>coupling</u> <u>exergonic reactions</u> (releasing energy) with <u>endergonic reactions</u> (needing energy)

What drives reactions?

- If reactions are "downhill", why don't they just happen spontaneously?
 - because covalent bonds are stable bonds

Cells must "do" work

Examples of cellular work:

- Mechanical muscle contractions
- Transport pumping across membranes
- Chemical making polymers

Cells must use ENERGY to do work...

- -Couples an *exergonic* process to drive an *endergonic* one.
- ATP is used to couple the reactions together.

ATP (Adenosine TriPhosphate) Made of:

- Adenine (nitrogenous base)
- Ribose (pentose sugar)
- 3 phosphate groups

ATP performs work

- Works by energizing other molecules
 - by transferring **phosphate groups**.

ATP:

- Renewable energy resource.
- Unstable bonds

Food:

- Long term energy storage
- Stable bonds

ATP Cycles

- Energy released from ATP drives anabolic reactions.
- Energy from catabolic reactions "recharges" ATP.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.