Friday, May 8th

Do you know what it means to be in **Hardy-Weinberg equilibrium**? Take a look at this video clip: <u>Penguin Prof's H-W Equilibrium</u>

Please take out a calculator.

Remember,
$$p =$$
 dominant allele $q =$ recessive allele

$$p + q = 1$$

 $p^2 + 2pq + q^2 = 1$

Let's look at our PTC data

	Period 2	Period 3	Period 4	Total students
Tasters	16	10	10	36
Non-tasters	13	9	8	30
Total population	29	19	18	66

The gene for tasting phenylthiocarbamide, or PTC, has two alleles; the **dominant** allele, tasting, while **the recessive**, non-tasting.

QUICK: IF you are a non-taster, what **must** your GENOTYPE be?

IF you ARE able to taste PTC, what could your GENOTYPE be?

The Hardy-Weinberg equations can be used to find the ALLELE frequencies within a population, as well as the GENOTYPE frequencies.

Right away, non-tasters are **tt**, which corresponds to the **q**² part of the equation below:

$$p + q = 1$$

 $p^2 + 2pq + q^2 = 1$

You can find value for q now very easily...

Now that you have q, can you find p?????

Use the first equation to solve for \mathbf{p} , which is the allele frequency for the DOMINANT allele in the population. $\mathbf{p} + \mathbf{q} = 1$

Now that you know the ALLELE frequencies, you can calculate the **homozygous dominant** and **heterozygous** GENOTYPE frequencies by using the formula: $p^2 + 2pq + q^2 = 1$

